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Abstract. In this paper, we discuss the evolution operator and the transition probabilities expressed as
functions of the vacuum mass squared differences, the vacuum mixing angles, and the matter density pa-
rameter for three flavor neutrino oscillations in matter of varying density in the plane wave approximation.
The applications of this to neutrino oscillations in a model of the earth’s matter density profile, step func-
tion matter density profiles, constant matter density profiles, linear matter density profiles, and finally in
a model of the sun’s matter density profile are discussed. We show that for matter density profiles which
do not fluctuate too much, the total evolution operator consisting of n operators can be replaced by one
single evolution operator in the semi-classical approximation.

1 Introduction

In previous papers [1,2], we have given analytic expres-
sions for the three flavor neutrino oscillation evolution
operator and the transition probabilities in presence of
constant matter densities expressed in the vacuum mix-
ing matrix elements and the neutrino energies or masses,
i.e., incorporating the so-called Mikheyev–Smirnov–
Wolfenstein (MSW) effect [3,4]. Here we will discuss the
application of this to realistic matter density variations
in a “semi-classical” approximation based on our previous
results. This allows a simple and efficient calculation to be
made of neutrino oscillations in media of varying densities.
We compare this approximate formula with a numerical
simulation in a multi-step model. We will as before assume
that the CP phase δ is equal to zero. Thus, the neutrino
mixing matrix is real. The semi-classical approximation
for three neutrino flavors, we believe, is a unique part of
our investigation.

Previous work on models for three flavor neutrino os-
cillations in matter for constant matter density includes
works of Barger et al. [5], Kim and Sze [6], and Zaglauer
and Schwarzer [7]. Approximate solutions for three fla-
vor neutrino oscillations in matter have been presented
by Kuo and Pantaleone [8] and Joshipura and Murthy [9].
Approximate treatments have also been done by Toshev
and Petcov [10]. D’Olivo and Oteo have made contribu-
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tions by using an approximative Magnus expansion for the
time evolution operator [11]. Extensive numerical inves-
tigations for matter enhanced three neutrino oscillations
have been made by Fogli et al. [12]. Studies of neutrino os-
cillations in earth has been performed by several authors
[13–18].

Neutrino oscillations for matter with linearly varying
density have been treated by Petcov [19] and Lehmann et
al. [20]. Osland and Wu [21] have also solved the case for
exponentially varying density. Matter enhanced two flavor
neutrino oscillations with an arbitrary monotonic matter
density profile have been studied by Balantekin and Bea-
com [22] using a uniform semi-classical approximation. See
also Fishbane et al. [23] for two flavor neutrino oscillations
in matter of varying density.

2 The evolution operator
in presence of matter

Let the flavor state basis and mass eigenstate basis be de-
noted by Bf ≡ {|να〉}α=e,µ,τ and Bm ≡ {|νa〉}3

a=1, respec-
tively. Then the flavor states |να〉 ∈ Bf can be obtained
as a superposition of the mass eigenstates |νa〉 ∈ Bm, or
vice versa. The bases Bf and Bm are of course just two
different representations of the same Hilbert space.

In the present analysis, we will use the plane wave ap-
proximation to describe neutrino oscillations. In this ap-
proximation, a neutrino flavor state |να〉 is a linear com-
bination of neutrino mass eigenstates |νa〉’s such that [24]
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|να〉 =
3∑

a=1

U∗
αa|νa〉, (1)

where α = e, µ, τ . In what follows, we will use the short-
hand notations |α〉 ≡ |να〉 and |a〉 ≡ |νa〉 for the flavor
states and the mass eigenstates, respectively.

The components of a state ψ in flavor basis and mass
basis, respectively, are related to each other by

ψf = Uψm, (2)

where

ψf ≡ (ψα) ≡




ψe

ψµ

ψτ


 ∈ Bf

and

ψm ≡ (ψa) ≡




ψ1

ψ2

ψ3


 ∈ Bm.

A convenient parameterization for U = U(θ1, θ2, θ3) is
given by [25]

U =




C2C3 S3C2 S2

−S3C1 − S1S2C3 C1C3 − S1S2S3 S1C2

S1S3 − S2C1C3 −S1C3 − S2S3C1 C1C2


 , (3)

where Si ≡ sin θi and Ci ≡ cos θi for i = 1, 2, 3. This is
the standard representation of the neutrino mixing matrix.
The quantities θi, where i = 1, 2, 3, are the vacuum mixing
angles. Since we have put the CP phase equal to zero in
the neutrino mixing matrix, this means that U∗

αa = Uαa

for α = e, µ, τ and a = 1, 2, 3.
In the mass basis, the Hamiltonian H for the propaga-

tion of the neutrinos in vacuum is diagonal and is given
by

Hm =




E1 0 0
0 E2 0
0 0 E3


 , (4)

where Ea = (m2
a + p2)1/2, a = 1, 2, 3, are the energies of

the neutrino mass eigenstates |a〉, a = 1, 2, 3 with masses
ma, a = 1, 2, 3. We will assume the three-momentum p to
be the same for all mass eigenstates.

When neutrinos propagate in ordinary matter, there is
an additional term in the Hamiltonian H coming from the
presence of electrons in matter [4]. This term, the potential
term, is diagonal in flavor basis and is given by

Vf = A




1 0 0
0 0 0
0 0 0


 ≡ AKf , (5)

where

A ≡ A(r) = ±
√

2GFNe(r) � ± 1√
2
GF

1
mN

ρ(r)

is the matter density parameter and Kf is the projec-
tor in the flavor basis on the electron neutrinos. Here GF
is the Fermi weak coupling constant, Ne is the electron
density, mN is the nucleon mass, and ρ is the matter
density. The sign of the matter density parameter de-
pends on whether we deal with neutrinos (+) or antineu-
trinos (−). In the mass basis, this piece of the Hamiltonian
is Vm = U−1VfU , where U is again the neutrino mixing
matrix.

In the case when the neutrinos propagate through mat-
ter, as here, the Hamiltonian is not diagonal in either
the mass basis or the flavor basis, and we have to cal-
culate the evolution operator Uf (t) or Uf (L) ≡ e−iHf L =
Ue−iHmLU−1 if we set t = L (L is the traveling (propa-
gation) path length of the neutrinos.).

To do so it is convenient to introduce the traceless real
symmetric matrix T defined by T ≡ Hm − (trHm)I/3.
The trace of the Hamiltonian in mass basis Hm ≡ Hm +
U−1VfU is trHm = E1 + E2 + E3 + A, and the matrix T
can then be written as (see (6) on top of the next page)
where Eab ≡ Ea −Eb. Of the six antisymmetric quantities
Eab, where a, b = 1, 2, 3 and a = b, only two are linearly
independent, since the Eab’s fulfill the relations Eba =
−Eab and E12 + E23 + E31 = 01. This means that the
evolution operator in the mass basis can be written as [1,
2]

Um(L) ≡ e−iHmL = φe−iLT (7)

= φ

3∑
a=1

e−iLλa
1

3λ2
a + c1

[
(λ2

a + c1)I + λaT + T 2] ,
where φ ≡ e−iL(trHm)I/3, λa, a = 1, 2, 3, are the eigenval-
ues of the matrix T , and I is the 3 × 3 identity matrix2.
The coefficients c0, c1, and c2 are all real and the eigen-
values λa, a = 1, 2, 3, can be expressed in closed form in
terms of these [1,2].

The evolution operator for the neutrinos in flavor basis
is thus given by

Uf (L) = e−iHf L = Ue−iHmLU−1 (8)

= φ

3∑
a=1

e−iLλa
1

3λ2
a + c1

[
(λ2

a + c1)I + λaT̃ + T̃ 2
]
,

1 Later, we will use the usual (vacuum) mass squared dif-
ferences ∆m2

21 and ∆m2
32, instead of E21 and E32, which are

related to each other by ∆m2
21 = 2EνE21 and ∆m2

32 � 2EνE32,
where Eν is the neutrino energy

2 Using Cayley–Hamilton’s theorem, the exponential of a
matrix M , eM =

∑∞
n=0

1
n!M

n (infinite series), can be writ-
ten as eM =

∑N−1
n=0 anMn (finite series, N is the dimension of

M), where an (n = 0, 1, . . . , N − 1) are some coefficients to be
determined. In this case, since N = 3 (the dimension of T is
three), this means that we have e−iLT = a0I−ia1LT −a2L

2T 2,
i.e., there are no higher power terms of T in e−iLT than that
of order two
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T = (Tab) =




AU2
e1 − 1

3A + 1
3 (E12 + E13) AUe1Ue2 AUe1Ue3

AUe1Ue2 AU2
e2 − 1

3A + 1
3 (E21 + E23) AUe2Ue3

AUe1Ue3 AUe2Ue3 AU2
e3 − 1

3A + 1
3 (E31 + E32)


 , (6)

where T̃ ≡ UTU−1. Equation (8) is our final expression
for Uf (L).

Since Hf = UHmU−1, it is clear that T̃ = Hf −
(trHf )I/3 = Hf − (trHm)I/3 due to the invariance of
the trace under transformation of U . In fact, the charac-
teristic equation is also invariant under transformation of
U and therefore so are the coefficients c0, c1, c2, and the
eigenvalues λ1, λ2, λ3. However, the expression for Hf is
much more complicated than that for Hm, which is the
reason why we work with Hm instead of Hf .

The formula (8) expresses the time (or L) evolution
directly in terms of the mass squared differences and the
vacuum mixing angles without introducing any auxiliary
matter mixing angles. By dividing the density variation
in small, approximately constant segments, and using this
formula repeatedly in each segment, we can numerically
study neutrino oscillations in matter with varying density.
We will use this method as a standard test for the semi-
classical approximation to the evolution operator that we
study below.

3 The semi-classical approximation

The formula given in (8) is the evolution operator in flavor
basis for constant matter density. To handle the case of
varying matter density, let us divide the distance L from
the source to the detector into N equidistant parts and put
the index k on the eigenvalues λk

a, where a = 1, 2, 3 denote
the three mass eigenstates. For any matter density profile
ρ(r) we first make this profile discrete and introduce ρk as
the matter density in the interval rk−1 ≤ r ≤ rk, where k
varies from 1 to N with r0 = 0 and rN = L. The length
of each segment is then ∆rk = rk − rk−1 = L/N . The
evolution operator in mass basis from 0 to L can then be
written as the ordered product

Um(L) = Um(rN − rN−1)Um(rN−1 − rN−2) . . .
. . . Um(r2 − r1)Um(r1 − r0). (9)

Note that the order of the Um(rk − rk−1)’s is important,
since these operators do not in general commute.

When N is large, each step is small and the exponent
in the evolution operator Um(rk − rk−1) = Um(∆rk) is
small. We can then approximate this operator with

Um(∆rk) � e−i∆rkHk
m , (10)

where Hk
m ≡ Hm + AkKm and Ak ∝ ρk. Inserting this

into (9) gives

Um(L) � e−i∆rN HN
me−i∆rN−1HN−1

m . . . e−i∆r2H2
me−i∆r1H1

m .
(11)

Since the Hk
m’s do not commute, the higher order terms

have to be calculated with the time-ordering (here rather
r-ordering) operator. However, here we will at first be sat-
isfied with the lowest order result, which we call the semi-
classical approximation. In this approximation, we retain
only the terms proportional to ∆rk = L/N , and thus, ne-
glect the noncommutativity of the Hk

m’s for different k’s.
We can thus write

Um(L) � e−i
∑N

k=1
L
N Hk

m . (12)

In the limit N → ∞, this gives the integral formula

Um(L) = e−i
∫ L
0 Hm(r)dr = φ(L)e−i

∫ L
0 T (r)dr, (13)

where T (r) is the traceless part of the Hamiltonian corre-
sponding to the electron density at position r between 0
and L and φ(L) is the phase factor coming from the trace.

For further discussion it is often convenient to retain
the original form of the Hamiltonian and to use Hm =
Hm + AU−1KfU rather than T . Thus, when A = A(r),
we obtain

∫ L

0
Hm(r)dr = L(Hm + Ā(L)Km), (14)

where

Ā(L) ≡ 1
L

∫ L

0
A(r)dr

is the average matter density along the baseline L and

Km ≡ U−1KfU,

which means that the evolution operator in the mass basis
can be written as

Um(L) = e−iL(Hm+Ā(L)Km) ≡ φ̄e−iLT̄ , (15)

where φ̄ ≡ e−iL(trH̄m)/3, T̄ ≡ H̄m −(trH̄m)I/3, and H̄m ≡
Hm + Ā(L)Km.

For this case we can thus use the previous expression
for T = Hm − (trHm)I/3 by simply replacing A with
Ā(r) and then pass to the flavor basis by using the U

transformation, i.e., T̃ = UTU−1.
Thus, for any L we can use the spectral decomposition

theorem and we find that

Uf (L) = φ(L)
3∑

a=1

e−iLλa(L)Pa(L), (16)

where λa(L) is the ath eigenvalue of T (L) (or T̃ (L)) and
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Pa(L) =
1

3λ2
a(L) + c1(L)

×
[
(λ2

a(L) + c1(L))I + λa(L)T̃ (L) + T̃ 2(L)
]

(17)

is the projection operator. Everything here is of course
L-dependent, since the operator is L-dependent and there-
fore also the eigenvalues. The phase factor is φ(L) =
e−iL(trHf (L))/3 = e−iL(trHm(L))/3.

In the case of a linear matter density of the form
A(r) = A+Br, we obtain Ā(r) = A+Br/2. Similarly, in
the case of a step function like matter density, relevant to
the matter distribution of the earth, we have

A(r) =




A1, 0 ≤ r ≤ L1,

A2, L1 ≤ r ≤ L1 + L2,

A1, L1 + L2 ≤ r ≤ 2L1 + L2,

where 2L1 + L2 ≡ L, which leads to

Ā(r) =




A1, 0 ≤ r ≤ L1,

A2

(
1 − L1

r

)
+ A1

L1

r
, L1 ≤ r ≤ L1 + L2,

A1

(
1 − L2

r

)
+ A2

L2

r
, L1 + L2 ≤ r ≤ 2L1 + L2.

(18)

Finally, in the case of an exponentially decreasing matter
density A(r) = Ae−r/r0 , where A and r0 are parameters
relevant to the matter distribution of the sun, we obtain

Ā(r) = A
r0

r

(
1 − e−r/r0

)
. (19)

We can see here that in the semi-classical approxima-
tion the influence of the density Ā decays as 1/L with
distance L from the matter. The evolution should there-
fore be continued with the vacuum evolution operator as
soon as the neutrinos leave the matter region.

4 Digression
on the semi-classical approximation

Let us consider the semi-classical (s.c.) evolution operator
further. It can be written as

U(r)s.c.m = e−iH(1)
m (r), (20)

where

H(1)
m (r) ≡ Hmr + A(1)(r)Km.

Here A(1)(r) ≡ ∫ r

0 A(s)ds. Now, the equation of mo-
tion for the full evolution operator Um is

i
d
dr

Um(r) = Hm(r)Um(r). (21)

This can be integrated to give the equation

Um(r) = 1 − i
∫ r

0
Hm(s)Um(s)ds. (22)

Upon differentiating the semi-classical evolution operator
above, we see that, although

d
dr

H(1)
m (r) = Hm(r) = Hm + A(r)Km, (23)

we can equate i(d/dr)U s.c.
m (r) with Hm(r)U s.c.

m (r) only
when the commutator

[
H(1)

m (r),Hm(r)
]

can be neglected.
This commutator can be calculated to be[

H(1)
m (r),Hm(r)

]
=

∫ r

0
s
dA
ds

(s)ds [Hm,Km] . (24)

Thus, when ∫ r

0
s
dA
ds

(s)ds =
r2

2
dA
ds

(ξ)

for 0 ≤ ξ ≤ r is small, the semi-classical approximation
to the evolution operator is a good approximation to the
full evolution operator. For constant matter density this
is of course true. For linear matter density A(r) = A+Br
the coefficient B should be small, i.e., Br � A or at least
Br < A.

Equation (22) can be solved in a systematic way by
iteration, leading to

Um(r) = 1 − i
∫ r

0
Hm(s)ds

+ (−i)2
∫ r

0
Hm(s)

∫ s

0
Hm(s′)ds′ds + . . . . (25)

The Hamiltonian Hm(r) is the one given in (23). The re-
sult to second order is then given by

Um(r) � 1 − ir
(
Hm + Ā(r)Km

)
+ (−i)2

r2

2
(
Hm + Ā(r)Km

)2

+ (−i)2
r2

2

(
¯̄A(r) − Ā(r)

)
[Hm,Km] , (26)

where

Ā(r) ≡ A(1)(r)/r, A(1)(r) ≡
∫ r

0
A(s)ds,

¯̄A(r) ≡ 2A(2)(r)/r2, A(2)(r) ≡
∫ r

0
A(1)(s)ds.

By inspection we see that the expression in (26) deviates
from an expansion of the semi-classical approximation by
the terms proportional to the commutator [Hm,Km] and
higher order terms in Hm and Km. In fact, the commuta-
tor between the Hamiltonian at different points s and s′
is

[Hm(s),Hm(s′)] = (A(s) − A(s′)) [Hm,Km] (27)

=
dA
ds

∣∣∣∣
s=s′

(s − s′)[Hm,Km] + . . . ,

which vanishes only for A(s) = A(s′). This is in general
true only for constant matter densities, A(s) = A. When
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dA/ds is large, the contribution of the commutator cannot
be neglected.

We can therefore sum the semi-classical approximation
terms and write the solution as

Um(r) = U s.c.
m (r) + a1 [Hm,Km] + . . . , (28)

where

a1 = (−i)2
r2

2

(
¯̄A(r) − Ā(r)

)

and the dots represent higher order terms that vanish
when the commutator [Hm,Km] is neglected. When∣∣∣ ¯̄A − Ā

∣∣∣ is small, the correction terms are small.

5 Probability amplitudes
and transition probabilities

In the previous sections, we have calculated the evolution
operator in the semi-classical approximation. Below we
will study the corresponding probability amplitudes and
transition probabilities.

The probability amplitude Aαβ for the να → νβ tran-
sition is simply defined as the (β, α)-matrix element of the
evolution operator in flavor basis, i.e.,

Aαβ ≡ 〈β|Uf (L)|α〉, α, β = e, µ, τ. (29)

We now consider transition probabilities for neutrino oscil-
lations in the semi-classical approximation given by (16).
Inserting (16) into (29) gives

Aαβ = φ(L)
3∑

a=1

e−iLλa(L)Pa(L)βα, (30)

where

Pa(L)βα =
(λ2

a + c1)δβα + λaT̃βα + (T̃ 2)βα

3λ2
a + c1

(31)

is the matrix element of the projector Pa(L). Here δαβ is
Kronecker’s delta. Note that T̃αβ = T̃βα and (T̃ 2)αβ =
(T̃ 2)βα. The transition probability Pαβ for να → νβ tran-
sition is defined as the absolute value squared of the prob-
ability amplitude Aαβ . Hence, the transition probabilities
in matter are given by the formulas

Pαβ = |Aαβ |2

= δαβ − 4
3∑

a=1

3∑
b=1

a<b

Pa(L)βαPb(L)βα sin2 x̃ab,

α, β = e, µ, τ, (32)

where x̃ab ≡ (λa(L) − λb(L))L/2.

6 Applications and discussion

The main results of our analysis are given by the evo-
lution operator for the neutrinos when passing through
matter with varying matter density in the “semi-classical
approximation”, (16), and the corresponding expressions
for the transition amplitudes in (30) and the transition
probabilities in (32), all expressed as finite sums of sim-
ple functions in the matrix elements of Hf (or Hm) and
integrals involving A(r), the varying matter density.

As applications, we have calculated the transition
probability Pµe for neutrino oscillations for different mat-
ter density profiles. Our calculations compare two different
cases.
(1) An “exact” numerical evolution operator method
based on the product of N evolution operators using

Uf (L) = Uf (rN − rN−1)Uf (rN−1 − rN−2) . . .
. . . Uf (r2 − r1)Uf (r1 − r0), (33)

with the formula (8) used for each step with the appro-
priate matter density; and
(2) The semi-classical approximation method based on one
single evolution operator using

Uf (L) = φ̄Ue−iLT̄U−1. (34)

In all our examples discussed below, we have used the
earth center crossing neutrino traveling path length, ex-
cept for the last example in which we discuss the sun.

Let R⊕ � 6371 km be the radius of the earth and
r⊕ � 3486 km be the radius of the core with this approxi-
mation and in a numerical simulation based on (9) with a
step length of L/N = 2R⊕/100 = 127.42 km. The thick-
ness of the mantle is then R⊕ − r⊕ � 2885 km with the
matter density parameter A1 = Amantle � 1.70 · 10−13 eV
(ρ1 = ρmantle � 4.5 g/cm3), whereas the matter density
parameter of the core is A2 = Acore � 4.35 · 10−13 eV
(ρ2 = ρcore � 11.5 g/cm3).

Neutrinos traversing the earth towards a detector close
to the surface of the earth, pass through the matter of
varying density A(r) where the distances Li, i = 1, 2,
are functions of the nadir angle h, where h ≡ π − θz,
θz being the zenith angle. As h varies from 0 to π/2, the
cord L = L(h) of the neutrino passage through earth be-
comes shorter and shorter. At an angle larger than h0 =
arcsin(r⊕/R⊕) � 33.17◦, the distance L2 = 0, and the
neutrinos no longer traverse the core.

The mass squared differences (∆M2 ≡ ∆m2
32 and

∆m2 ≡ ∆m2
21) and the vacuum mixing angles (θ1, θ2, θ3)

used here are chosen to correspond to those obtained from
analyses of various neutrino oscillation data. We have
taken

∆M2 = 3.2 · 10−3eV2, ∆m2 = 0, θ1 = 45◦,
θ2 = 5◦, θ3 = 45◦.

The values of ∆M2 and θ1 are governed by atmo-
spheric neutrino data [27] and the values of ∆m2 and θ3
(LMA) by solar neutrino data [28], where LMA stands for
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Fig. 1. The transition probability Pµe as a function of the
neutrino energy Eν for the mantle–core–mantle step function
approximation of the earth’s matter density profile. The mean
matter density of the mantle and the core were chosen to
be ρmantle = 4.5 g/cm3 (Amantle � 1.7 · 10−13 eV, Lmantle =
2885 km) and ρcore = 11.5 g/cm3 (Acore � 4.4 · 10−13 eV,
Lcore = 6972 km), respectively. Parameter values: h = 0, θ1 =
45◦, θ2 = 5◦, θ3 = 45◦, ∆m2 = 0, and ∆M2 = 3.2 · 10−3 eV2

large mixing angle (matter) solution. The value of θ2 is
below the CHOOZ upper bound, which is sin2 2θ2 = 0.10
[29]. These choices are the most optimistic ones for ob-
taining any effects in long baseline (LBL) experiments
from the sub-leading ∆m2 scale [30]. We should mention
though, that these data are taken from two neutrino flavor
model analyses.

As a first example, we have investigated the earth’s
matter density profile using the published Stacey model
for the earth’s matter density profile [26]. The resulting
curves of the (exact) numerical evolution operator method
for a mantle–core–mantle step function approximation of
the earth’s matter density profile, the semi-classical ap-
proximation method, and for reference the (exact) numer-
ical evolution operator method of the earth’s matter den-
sity profile are shown in Fig. 1. It has earlier been found
by Freund and Ohlsson [17] that a mantle–core–mantle
step function approximation of the earth’s matter density
profile is a good approximation (even in a three neutrino
scenario). The numerical evolution operator method re-
sults were carried out using N = 100, i.e., they consist of
a product of 100 evolutions with different constant mat-
ter densities for each evolution step, whereas the semi-
classical approximation method result was obtained with
just one single evolution with the average matter density
of the earth’s matter density profile Ā⊕ (ρ̄⊕ � 7.8 g/cm3),
which is also the reason why the semi-classical approx-
imation curve only has got one resonance peak at Eν =
Ēν,⊕ � 5.4 ·109 eV. This peak of course lies in between the
two resonance peaks (ideally at Eν = Eν,core � 3.7 ·109 eV
and Eν = Eν,mantle � 9.4 · 109 eV) of the exact numerical
evolution calculation, since Amantle ≤ Ā⊕ ≤ Acore.

In Figs. 2 and 3, we have used two different step func-
tion matter density profiles.
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Fig. 2. The transition probability Pµe as a function of the
neutrino energy Eν for a step function matter density profile
with ρ1 = 4.5 g/cm3 (A1 � 1.7 · 10−13 eV, L1 = 2885 km) and
ρ2 = 5.5 g/cm3 (A2 � 2.1·10−13 eV, L2 = 6972 km). Parameter
values: h = 0, θ1 = 45◦, θ2 = 5◦, θ3 = 45◦, ∆m2 = 0, and
∆M2 = 3.2 · 10−3 eV2
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Fig. 3. The transition probability Pµe as a function of the
neutrino energy Eν for a step function matter density profile
with ρ1 = 1g/cm3 (A1 � 3.8 · 10−14 eV, L1 = 2885 km) and
ρ2 = 2g/cm3 (A2 � 7.6 · 10−14 eV, L2 = 6972 km). Parameter
values: h = 0, θ1 = 45◦, θ2 = 5◦, θ3 = 45◦, ∆m2 = 0, and
∆M2 = 3.2 · 10−3 eV2

There appear no double peaks in these figures even
though the step function matter density profiles consist
of two different Ak’s. Furthermore, in Figs. 2 and 3, the
differences between the values of the A1’s and A2’s are the
same. The step function matter density profile in Fig. 2
could simulate the earth’s matter density profile if the
earth has a core, which is much less dense than has been
found by geophysics. Note that the absolute error between
the two curves in Fig. 2 is larger than in Fig. 3, whereas
the relative error of the curves in Fig. 3 is larger than in
Fig. 2.

Next, in Figs. 4 and 5, we have studied constant matter
density profiles.
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Fig. 4. The transition probability Pµe as a function of the
neutrino energy Eν for a constant matter density profile with
ρ = 7.8 g/cm3 (A � 3.0 · 10−13 eV, L = 12742 km). Parameter
values: h = 0, θ1 = 45◦, θ2 = 5◦, θ3 = 45◦, ∆m2 = 0, and
∆M2 = 3.2 · 10−3 eV2
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Fig. 5. The transition probability Pµe as a function of the
neutrino energy Eν for a constant matter density profile with
ρ = 4.5 g/cm3 (A � 1.7 · 10−13 eV, L = 12742 km). Parameter
values: h = 0, θ1 = 45◦, θ2 = 5◦, θ3 = 45◦, ∆m2 = 0, and
∆M2 = 3.2 · 10−3 eV2

The constant matter density used in Fig. 4 is the av-
erage density of the earth. The curves in this figure could
be compared with the dotted curve in Fig. 1. In Fig. 5,
the constant matter density was chosen to be equal to the
average density in the mantle of the earth. In both these
figures, the semi-classical approximation method gives an
excellent agreement with the exact numerical evolution
operator method as it should, since in the case of constant
matter density Ā = A = const., which means that the two
methods are equivalent. Thus, the very small deviations
seen in the figures are only due to numerics.

Then, in Figs. 6 and 7, we discuss linear matter density
profiles.

The parameter B used in Fig. 6 is larger than that in
Fig. 7. The smaller B is the better the agreement between
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Fig. 6. The transition probability Pµe as a function of the
neutrino energy Eν for a linear matter density profile with
A = 0 and BL � 3.8 · 10−13 eV (corresponding to ρ = 5g/cm3

and L = 12742 km if A = BL/2). Parameter values: h = 0,
θ1 = 45◦, θ2 = 5◦, θ3 = 45◦, ∆m2 = 0, and ∆M2 = 3.2 ·
10−3 eV2
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Fig. 7. The transition probability Pµe as a function of the
neutrino energy Eν for a linear matter density profile with
A = 0 and BL � 7.6 · 10−14 eV (corresponding to ρ = 1g/cm3

and L = 12742 km if A = BL/2). Parameter values: h = 0,
θ1 = 45◦, θ2 = 5◦, θ3 = 45◦, ∆m2 = 0, and ∆M2 = 3.2 ·
10−3 eV2

the numerical evolution operator method and the semi-
classical approximation method becomes. However, linear
matter density profiles only have theoretical interest, since
they are not to be found in Nature at least at large dis-
tance scales. They could, however, be used on shorter dis-
tances scales though, e.g., LBL experiments like K2K, MI-
NOS, and CERN-LNGS [31], where the neutrinos traverse
the earth mantle with cord-like paths.

Finally, in Fig. 8, we investigated the sun’s matter den-
sity profile, which is an exponentially decreasing matter
density profile. The semi-classical approximation method
does not work as well in this case as for step function, con-
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Fig. 8. The transition probability Pµe as a function of the
neutrino energy Eν for the exponentially decreasing matter
density profile of the sun with ρ�(r) = ρ�(0)e−r/r0 , where
ρ�(0) = 200 g/cm3, r0 = R�/10.54 � 66000 km, and R� �
6.96 ·108 m [32]. Parameter values: θ1 = 45◦, θ2 = 5◦, θ3 = 45◦,
∆m2 = 0, and ∆M2 = 3.2 · 10−3 eV2

stant, and linear matter density profiles, since this matter
density profile is varying too quickly3.

In conclusion, the semi-classical approximation will be
a good approximation for some types of matter density
profiles. In certain cases, of slowly varying matter density,
it is even an excellent approximation. The major advan-
tage of the semi-classical approximation method as com-
pared to the exact numerical evolution operator method
is that we only need to calculate one single evolution op-
erator for one single average matter density, the average
matter density parameter of the considered matter density
profile Ā(L), i.e., we can make the replacement

Uf (L) =
n∏

i=1

Uf (Li, Ai)

︸ ︷︷ ︸
n operators

→ Uf (L) = φ̄e−iLT̄︸ ︷︷ ︸
one operator

.
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3 A remark about the neutrino energy interval shown in
Fig. 8 is in place. Solar neutrinos have energies of the order
of 0.1MeV–10MeV, i.e., energies much smaller than what is
shown in Fig. 8. However, the resonance energy due to the large
mass squared difference ∆M2 = 3.2·10−3 eV2 is given in Fig. 8.
Thus, the neutrino energy interval shown in Fig. 8 is only of
theoretical interest and the figure shows how well the semi-
classical approximation works in the region where the transi-
tion probability Pµe changes most
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